Really Ageing Systems Undergoing a Discrete Maintenance Optimization
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10250187" target="_blank" >RIV/61989100:27240/22:10250187 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/10/16/2865" target="_blank" >https://www.mdpi.com/2227-7390/10/16/2865</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10162865" target="_blank" >10.3390/math10162865</a>
Alternative languages
Result language
angličtina
Original language name
Really Ageing Systems Undergoing a Discrete Maintenance Optimization
Original language description
In general, a complex system is composed of different components that are usually subject to a maintenance policy. We take into account systems containing components that are under both preventive and corrective maintenance. Preventive maintenance is considered as a failure-based preventive maintenance model, where full renewal is realized after the occurrence of every nth failure. It offers an imperfect corrective maintenance model, where each repair deteriorates the component or system lifetime, the probability distribution of which gradually changes via increasing failure rates. The reliability mathematics for unavailability quantification is demonstrated in the paper. The renewal process model, involving failure-based preventive maintenance, arises from the new corresponding renewal cycle, which is designated a real ageing process. Imperfect corrective maintenance results in an unwanted rise in the unavailability function, which can be rectified by a properly selected failure-based preventive maintenance policy; i.e., replacement of a properly selected component respecting both cost and unavailability after the occurrence of the nth failure. The number n is considered a decision variable, whereas cost is an objective function in the optimization process. The paper describes a new method for finding an optimal failure-based preventive maintenance policy for a system respecting a given reliability constraint. The decision variable n is optimally selected for each component from a set of possible realistic maintenance modes. We focus on the discrete maintenance model, where each component is realized in one or several maintenance mode(s). The fixed value of the decision variable determines a single maintenance mode, as well as the cost of the mode. The optimization process for a system is demanding in terms of computing time because, if the system contains k components, all having three maintenance modes, we need to evaluate 3(k) maintenance configurations. The discrete maintenance optimization is shown with two systems adopted from the literature.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
<a href="/en/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: A Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
MATHEMATICS
ISSN
2227-7390
e-ISSN
2227-7390
Volume of the periodical
10
Issue of the periodical within the volume
16
Country of publishing house
CH - SWITZERLAND
Number of pages
17
Pages from-to
nestrankovano
UT code for WoS article
000845482000001
EID of the result in the Scopus database
—