All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An Optical-Based Sensor for Automotive Exhaust Gas Temperature Measurement

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10250190" target="_blank" >RIV/61989100:27240/22:10250190 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9844696" target="_blank" >https://ieeexplore.ieee.org/document/9844696</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TIM.2022.3192274" target="_blank" >10.1109/TIM.2022.3192274</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    An Optical-Based Sensor for Automotive Exhaust Gas Temperature Measurement

  • Original language description

    The article introduces the design of an optical-based sensor that measures automotive exhaust gas temperatures (EGTs) over a wide temperature range. To measure temperature, we combined the luminescence method and the blackbody radiation (BBR) principle. We also developed our own measurement hardware that includes the means to process and evaluate the signals obtained for temperature conversion using optical methods for application in the target temperature range (-40 degrees C to 820 degrees C). This temperature range is specified by the automotive industry according to current combustion engine designs and emission requirements, which stipulate accurate measurement of operating temperature for optimal functioning. Current measurement solutions are based on the thermocouple principle. This approach is problematic, especially with regard to electromagnetic interference and self-diagnostics, and problems also exist with the gradual penetration of moisture into the temperature probe under extreme thermal stress. The case study confirmed the full functionality of the new optical sensor concept. The benefit of the proposed concept is full compatibility with existing conceptual solutions while maintaining the advantages of optical-based sensors. The results indicated that a combination of the BBR and luminescence methods with a ruby crystal in the proposed solution produced an average absolute error of 2.32 degrees C in the temperature range -40 degrees C to 820 degrees C over a measurement cycle time of 0.25 s.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Research Centre of Advanced Mechatronic Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Instrumentation and Measurement

  • ISSN

    0018-9456

  • e-ISSN

    1557-9662

  • Volume of the periodical

    71

  • Issue of the periodical within the volume

    28 July 2022

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    nestrankovano

  • UT code for WoS article

    000838531900013

  • EID of the result in the Scopus database