All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A comparative study of single-channel signal processing methods in fetal phonocardiography

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10250767" target="_blank" >RIV/61989100:27240/22:10250767 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269884" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269884</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0269884" target="_blank" >10.1371/journal.pone.0269884</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A comparative study of single-channel signal processing methods in fetal phonocardiography

  • Original language description

    Fetal phonocardiography is a non-invasive, completely passive and low-cost method based on sensing acoustic signals from the maternal abdomen. However, different types of interference are sensed along with the desired fetal phonocardiography. This study focuses on the comparison of fetal phonocardiography filtering using eight algorithms: Savitzky-Golay filter, finite impulse response filter, adaptive wavelet transform, maximal overlap discrete wavelet transform, variational mode decomposition, empirical mode decomposition, ensemble empirical mode decomposition, and complete ensemble empirical mode decomposition with adaptive noise. The effectiveness of those methods was tested on four types of interference (maternal sounds, movement artifacts, Gaussian noise, and ambient noise) and eleven combinations of these disturbances. The dataset was created using two synthetic records r01 and r02, where the record r02 was loaded with higher levels of interference than the record r01. The evaluation was performed using the objective parameters such as accuracy of the detection of S1 and S2 sounds, signal-to-noise ratio improvement, and mean error of heart interval measurement. According to all parameters, the best results were achieved using the complete ensemble empirical mode decomposition with adaptive noise method with average values of accuracy = 91.53% in the detection of S1 and accuracy = 68.89% in the detection of S2. The average value of signal-to-noise ratio improvement achieved by complete ensemble empirical mode decomposition with adaptive noise method was 9.75 dB and the average value of the mean error of heart interval measurement was 3.27 ms.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Research Centre of Advanced Mechatronic Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLoS One

  • ISSN

    1932-6203

  • e-ISSN

    1932-6203

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    August 19, 2022

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    32

  • Pages from-to

    1-32

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85136109400