Delay Optimal Schemes for Internet of Things Applications in Heterogeneous Edge Cloud Computing Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10250927" target="_blank" >RIV/61989100:27240/22:10250927 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1424-8220/22/16/5937" target="_blank" >https://www.mdpi.com/1424-8220/22/16/5937</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s22165937" target="_blank" >10.3390/s22165937</a>
Alternative languages
Result language
angličtina
Original language name
Delay Optimal Schemes for Internet of Things Applications in Heterogeneous Edge Cloud Computing Networks
Original language description
Over the last decade, the usage of Internet of Things (IoT) enabled applications, such as healthcare, intelligent vehicles, and smart homes, has increased progressively. These IoT applications generate delayed- sensitive data and requires quick resources for execution. Recently, software-defined networks (SDN) offer an edge computing paradigm (e.g., fog computing) to run these applications with minimum end-to-end delays. Offloading and scheduling are promising schemes of edge computing to run delay-sensitive IoT applications while satisfying their requirements. However, in the dynamic environment, existing offloading and scheduling techniques are not ideal and decrease the performance of such applications. This article formulates joint and scheduling problems into combinatorial integer linear programming (CILP). We propose a joint task offloading and scheduling (JTOS) framework based on the problem. JTOS consists of task offloading, sequencing, scheduling, searching, and failure components. The study's goal is to minimize the hybrid delay of all applications. The performance evaluation shows that JTOS outperforms all existing baseline methods in hybrid delay for all applications in the dynamic environment. The performance evaluation shows that JTOS reduces the processing delay by 39% and the communication delay by 35% for IoT applications compared to existing schemes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20200 - Electrical engineering, Electronic engineering, Information engineering
Result continuities
Project
<a href="/en/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: A Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Sensors
ISSN
1424-3210
e-ISSN
1424-8220
Volume of the periodical
22
Issue of the periodical within the volume
16
Country of publishing house
CH - SWITZERLAND
Number of pages
30
Pages from-to
nestrankovano
UT code for WoS article
000845301500001
EID of the result in the Scopus database
—