Modified Mayfly Algorithm for UAV Path Planning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251951" target="_blank" >RIV/61989100:27240/22:10251951 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2504-446X/6/5/134" target="_blank" >https://www.mdpi.com/2504-446X/6/5/134</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/drones6050134" target="_blank" >10.3390/drones6050134</a>
Alternative languages
Result language
angličtina
Original language name
Modified Mayfly Algorithm for UAV Path Planning
Original language description
The unmanned aerial vehicle (UAV) path planning problem is primarily concerned with avoiding collision with obstacles while determining the best flight path to the target position. This paper first establishes a cost function to transform the UAV route planning issue into an optimization issue that meets the UAV's feasible path requirements and path safety constraints. Then, this paper introduces a modified Mayfly Algorithm (modMA), which employs an exponent decreasing inertia weight (EDIW) strategy, adaptive Cauchy mutation, and an enhanced crossover operator to effectively search the UAV configuration space and discover the path with the lowest overall cost. Finally, the proposed modMA is evaluated on 26 benchmark functions as well as the UAV route planning problem, and the results demonstrate that it outperforms the other compared algorithms.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Drones
ISSN
2504-446X
e-ISSN
2504-446X
Volume of the periodical
6
Issue of the periodical within the volume
5
Country of publishing house
CH - SWITZERLAND
Number of pages
21
Pages from-to
nestrankovano
UT code for WoS article
000804367200001
EID of the result in the Scopus database
—