All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

In-Memory Computing Architectures for Big Data and Machine Learning Applications

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10252016" target="_blank" >RIV/61989100:27240/22:10252016 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-981-19-8069-5_2" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-19-8069-5_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-19-8069-5_2" target="_blank" >10.1007/978-981-19-8069-5_2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    In-Memory Computing Architectures for Big Data and Machine Learning Applications

  • Original language description

    Traditional computing hardware is working to meet the extensive computational load presented by the rapidly growing Machine Learning (ML) and Artificial Intelligence algorithms such as Deep Neural Networks and Big Data. In order to get hardware solutions to meet the low-latency and high-throughput computational needs of these algorithms, Non-Von Neumann computing architectures such as In-memory Computing (IMC) have been extensively researched and experimented with over the last five years. This study analyses and reviews works designed to accelerate Machine Learning task. We investigate different architectural aspects and directions and provide our comparative evaluations. We further discuss IMC research&apos;s challenges and limitations and present possible directions.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    FUTURE DATA AND SECURITY ENGINEERING. BIG DATA, SECURITY AND PRIVACY, SMART CITY AND INDUSTRY 4.0 APPLICATIONS, FDSE 2022

  • ISBN

    978-981-19806-9-5

  • ISSN

    1865-0929

  • e-ISSN

    1865-0937

  • Number of pages

    15

  • Pages from-to

    19-33

  • Publisher name

    SPRINGER INTERNATIONAL PUBLISHING AG

  • Place of publication

    CHAM

  • Event location

    Ho Chi Minh

  • Event date

    Nov 23, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000921145600002