In-Memory Computing Architectures for Big Data and Machine Learning Applications
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10252016" target="_blank" >RIV/61989100:27240/22:10252016 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-981-19-8069-5_2" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-19-8069-5_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-19-8069-5_2" target="_blank" >10.1007/978-981-19-8069-5_2</a>
Alternative languages
Result language
angličtina
Original language name
In-Memory Computing Architectures for Big Data and Machine Learning Applications
Original language description
Traditional computing hardware is working to meet the extensive computational load presented by the rapidly growing Machine Learning (ML) and Artificial Intelligence algorithms such as Deep Neural Networks and Big Data. In order to get hardware solutions to meet the low-latency and high-throughput computational needs of these algorithms, Non-Von Neumann computing architectures such as In-memory Computing (IMC) have been extensively researched and experimented with over the last five years. This study analyses and reviews works designed to accelerate Machine Learning task. We investigate different architectural aspects and directions and provide our comparative evaluations. We further discuss IMC research's challenges and limitations and present possible directions.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
FUTURE DATA AND SECURITY ENGINEERING. BIG DATA, SECURITY AND PRIVACY, SMART CITY AND INDUSTRY 4.0 APPLICATIONS, FDSE 2022
ISBN
978-981-19806-9-5
ISSN
1865-0929
e-ISSN
1865-0937
Number of pages
15
Pages from-to
19-33
Publisher name
SPRINGER INTERNATIONAL PUBLISHING AG
Place of publication
CHAM
Event location
Ho Chi Minh
Event date
Nov 23, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000921145600002