All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

DRLBTS: deep reinforcement learning-aware blockchain-based healthcare system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10252543" target="_blank" >RIV/61989100:27240/23:10252543 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/articles/s41598-023-29170-2" target="_blank" >https://www.nature.com/articles/s41598-023-29170-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-023-29170-2" target="_blank" >10.1038/s41598-023-29170-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    DRLBTS: deep reinforcement learning-aware blockchain-based healthcare system

  • Original language description

    Industrial Internet of Things (IIoT) is the new paradigm to perform different healthcare applications with different services in daily life. Healthcare applications based on IIoT paradigm are widely used to track patients health status using remote healthcare technologies. Complex biomedical sensors exploit wireless technologies, and remote services in terms of industrial workflow applications to perform different healthcare tasks, such as like heartbeat, blood pressure and others. However, existing industrial healthcare technoloiges still has to deal with many problems, such as security, task scheduling, and the cost of processing tasks in IIoT based healthcare paradigms. This paper proposes a new solution to the above-mentioned issues and presents the deep reinforcement learning-aware blockchain-based task scheduling (DRLBTS) algorithm framework with different goals. DRLBTS provides security and makespan efficient scheduling for the healthcare applications. Then, it shares secure and valid data between connected network nodes after the initial assignment and data validation. Statistical results show that DRLBTS is adaptive and meets the security, privacy, and makespan requirements of healthcare applications in the distributed network.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20200 - Electrical engineering, Electronic engineering, Information engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    15

  • Pages from-to

    1-15

  • UT code for WoS article

    000988825800045

  • EID of the result in the Scopus database