Towards Rough Set Theory for Outliers Detection in Questionnaire Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253449" target="_blank" >RIV/61989100:27240/23:10253449 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-42823-4_23" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-42823-4_23</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-42823-4_23" target="_blank" >10.1007/978-3-031-42823-4_23</a>
Alternative languages
Result language
angličtina
Original language name
Towards Rough Set Theory for Outliers Detection in Questionnaire Data
Original language description
Manual processing of questionnaire surveys takes a lot of time and effort. This article aims at the automatic detection of corrupted or inappropriate responses in questionnaire data using unsupervised outliers detection methods. Unlike numerical data, which are usually assessed by distance-based methods, the entries in questionnaires need to be assessed from multiple perspectives. This paper proposes a novel algorithm utilizing the rough sets that capture relations among attributes/questions. The rough set theory is based on the granularity of data and is used to find combinations of attributes identifying the discernible questionnaires. The method is compared with standard and recent outlier detection algorithms that are based on distance, entropy, correlation, and probability. The tests are computed on the real-world HBSC dataset using several experiments. The rough set score computed on combinations of three attributes is preferred as it returns significant outliers that even reflect multiple perspectives investigated by other types of methods.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 14164
ISBN
978-3-031-42822-7
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
15
Pages from-to
310-324
Publisher name
Springer
Place of publication
Cham
Event location
Tokio
Event date
Sep 22, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—