All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Performance Prediction in UAV-Terrestrial Networks With Hardware Noise

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253500" target="_blank" >RIV/61989100:27240/23:10253500 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/23:10253500

  • Result on the web

    <a href="https://ieeexplore.ieee.org/ielx7/6287639/6514899/10287354.pdf" target="_blank" >https://ieeexplore.ieee.org/ielx7/6287639/6514899/10287354.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3325478" target="_blank" >10.1109/ACCESS.2023.3325478</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Performance Prediction in UAV-Terrestrial Networks With Hardware Noise

  • Original language description

    To enhance the service quality of the unmanned aerial vehicle (UAV), the UAV-aided Internet of Things (IoT) systems could deploy a Deep Neural Network (DNN) for performance prediction for the users. Non-orthogonal multiple access (NOMA) is applied to such networks in order to improve spectrum efficiency, and results in improved quality of service at the ground users under the mobility of UAV. The outage and ergodic capacity requirements of the IoT users may not be satisfied due to some imperfect system parameters such as hardware noise. A DNN-based algorithm for performance prediction and the design of multiple antennas at the UAV under hardware noise is proposed. In this DNN-based UAV-NOMA, the central controller (server) collects system parameters periodically based on observing the state of IoT system and performs adjustments to the dynamic environment. The closed-form expressions for the outage probability and the ergodic capacity are derived to evaluate the performance of a group of IoT users. Our numerical results demonstrate that: i) In contrast to the traditional UAV-NOMA system, the UAV cannot know the performance at each IoT user in order to adjust the parameters (i.e. power allocation factors) before transmitting the signals to the devices; while the proposed DNN-based IoT system is capable of predicting the performance; ii) The performance of the IoT users can be significantly improved by integrating more antennas at the UAV and limiting levels of hardware noise; iii) By designing NOMA, the UAV-NOMA-based IoT system can increase the throughput to the tune of 40% compared with the benchmark (the orthogonal multiple access (OMA)-based IoT).

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20203 - Telecommunications

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    2023

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    14

  • Pages from-to

    117562-117575

  • UT code for WoS article

    001097929600001

  • EID of the result in the Scopus database