All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Artificial neural network-based estimation for rotor-flux model reference adaptive system

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253634" target="_blank" >RIV/61989100:27240/23:10253634 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S2352146523005124" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352146523005124</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.trpro.2023.11.215" target="_blank" >10.1016/j.trpro.2023.11.215</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Artificial neural network-based estimation for rotor-flux model reference adaptive system

  • Original language description

    At the start, this paper focuses on the function of a rotor-flux model reference adaptive system (RF-MRAS) and in the following part on the realization and application of artificial neural networks (ANN) in a sensorless induction motor drive. Afterwards, a data collection and usage process for the training of ANN is described. In the final part, experimental results of ANN&apos;s ability to estimate rotor flux are presented. According to simulations, ANN estimations are accurate and its application as a part of a control scheme looks promising.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20200 - Electrical engineering, Electronic engineering, Information engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Transportation Research Procedia. Volume 74

  • ISBN

  • ISSN

    2352-1457

  • e-ISSN

    2352-1465

  • Number of pages

    7

  • Pages from-to

    838-845

  • Publisher name

    Elsevier

  • Place of publication

    Amsterdam

  • Event location

    MIkulov

  • Event date

    May 29, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article