Artificial neural network-based estimation for rotor-flux model reference adaptive system
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253634" target="_blank" >RIV/61989100:27240/23:10253634 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S2352146523005124" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352146523005124</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.trpro.2023.11.215" target="_blank" >10.1016/j.trpro.2023.11.215</a>
Alternative languages
Result language
angličtina
Original language name
Artificial neural network-based estimation for rotor-flux model reference adaptive system
Original language description
At the start, this paper focuses on the function of a rotor-flux model reference adaptive system (RF-MRAS) and in the following part on the realization and application of artificial neural networks (ANN) in a sensorless induction motor drive. Afterwards, a data collection and usage process for the training of ANN is described. In the final part, experimental results of ANN's ability to estimate rotor flux are presented. According to simulations, ANN estimations are accurate and its application as a part of a control scheme looks promising.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20200 - Electrical engineering, Electronic engineering, Information engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Transportation Research Procedia. Volume 74
ISBN
—
ISSN
2352-1457
e-ISSN
2352-1465
Number of pages
7
Pages from-to
838-845
Publisher name
Elsevier
Place of publication
Amsterdam
Event location
MIkulov
Event date
May 29, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—