Insights Into Complex Functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10253735" target="_blank" >RIV/61989100:27240/23:10253735 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-32469-7_5" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-32469-7_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-32469-7_5" target="_blank" >10.1007/978-3-031-32469-7_5</a>
Alternative languages
Result language
angličtina
Original language name
Insights Into Complex Functions
Original language description
We introduce and employ two tools to gain insight into a function f= f(s) with complex argument s: (i) the Newton flows corresponding to the lines of constant phase and constant height, and (ii) the Cauchy-Riemann differential equations in amplitude and phase.
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Lecture Notes in Physics. Volume 1000
ISBN
978-3-031-32468-0
Number of pages of the result
33
Pages from-to
127-159
Number of pages of the book
263
Publisher name
Springer
Place of publication
Cham
UT code for WoS chapter
—