Virtual energy storage system for peak shaving and power balancing the generation of a MW photovoltaic plant
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254564" target="_blank" >RIV/61989100:27240/23:10254564 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S2352152X23016018" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352152X23016018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.est.2023.108204" target="_blank" >10.1016/j.est.2023.108204</a>
Alternative languages
Result language
angličtina
Original language name
Virtual energy storage system for peak shaving and power balancing the generation of a MW photovoltaic plant
Original language description
This article proposes a novel control of a Virtual Energy Storage System (VESS) for the correct management of non-programmable renewable sources by coordinating the loads demand and the battery storage systems operations at the residential level. The proposed novel control aims at covering two main gaps in current state-of-the-art VESSs. The first gap is considering a distributed battery storage system instead of a centralized one, the second gap is providing the electricity grid operator with two services instead of one. To this aim, the authors explore a VESS consisting of residential buildings where each apartment is equipped with an air conditioner but also with a battery storage system. The explored VESS provides the grid operator with both peak shaving and power balancing services for the generation of a megawatt photovoltaic plant located near the VESS. The goodness of the proposed coordinated control is demonstrated via numerical experiments and using real data, measured every 15 min in September 2019. The case study consists of a 1.4 MW photovoltaic plant located near a small town, 21 residential buildings with 168 apartments, each equipped with an air conditioner (continuous power is 1.5 kW) and battery energy storage systems (3 kW /2.5 kWh). The numerical results show that the battery energy storage systems are charged correctly during peak hours (the charging power is between 0.45 and 0.90 kW, and the state of charge varies from 20 % to 78 %) and that the residual photovoltaic plant generation resembles a horizontal line. Later, in the early afternoon, the reference temperature of the air conditioners and the charge/discharge of the battery storage systems are suitably adjusted by solving a mixed linear integer programming problem, to balance the reduction in photovoltaic plant generation, which lasts an hour and a half and peaks at 188 kW. Finally, the numerical results also show that the energy that remained in the batteries is entirely consumed by users in the late afternoon or evening and that the amplitude and the duration of the so-called "load rebound" are so slight that no compensation action (e.g., the bath returning or linear recovery strategy) is required for the considered case study.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20200 - Electrical engineering, Electronic engineering, Information engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Energy Storage
ISSN
2352-152X
e-ISSN
—
Volume of the periodical
71
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
11
Pages from-to
—
UT code for WoS article
001037052600001
EID of the result in the Scopus database
2-s2.0-85163962434