All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Virtual energy storage system for peak shaving and power balancing the generation of a MW photovoltaic plant

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254564" target="_blank" >RIV/61989100:27240/23:10254564 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S2352152X23016018" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352152X23016018</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.est.2023.108204" target="_blank" >10.1016/j.est.2023.108204</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Virtual energy storage system for peak shaving and power balancing the generation of a MW photovoltaic plant

  • Original language description

    This article proposes a novel control of a Virtual Energy Storage System (VESS) for the correct management of non-programmable renewable sources by coordinating the loads demand and the battery storage systems operations at the residential level. The proposed novel control aims at covering two main gaps in current state-of-the-art VESSs. The first gap is considering a distributed battery storage system instead of a centralized one, the second gap is providing the electricity grid operator with two services instead of one. To this aim, the authors explore a VESS consisting of residential buildings where each apartment is equipped with an air conditioner but also with a battery storage system. The explored VESS provides the grid operator with both peak shaving and power balancing services for the generation of a megawatt photovoltaic plant located near the VESS. The goodness of the proposed coordinated control is demonstrated via numerical experiments and using real data, measured every 15 min in September 2019. The case study consists of a 1.4 MW photovoltaic plant located near a small town, 21 residential buildings with 168 apartments, each equipped with an air conditioner (continuous power is 1.5 kW) and battery energy storage systems (3 kW /2.5 kWh). The numerical results show that the battery energy storage systems are charged correctly during peak hours (the charging power is between 0.45 and 0.90 kW, and the state of charge varies from 20 % to 78 %) and that the residual photovoltaic plant generation resembles a horizontal line. Later, in the early afternoon, the reference temperature of the air conditioners and the charge/discharge of the battery storage systems are suitably adjusted by solving a mixed linear integer programming problem, to balance the reduction in photovoltaic plant generation, which lasts an hour and a half and peaks at 188 kW. Finally, the numerical results also show that the energy that remained in the batteries is entirely consumed by users in the late afternoon or evening and that the amplitude and the duration of the so-called &quot;load rebound&quot; are so slight that no compensation action (e.g., the bath returning or linear recovery strategy) is required for the considered case study.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20200 - Electrical engineering, Electronic engineering, Information engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Energy Storage

  • ISSN

    2352-152X

  • e-ISSN

  • Volume of the periodical

    71

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

    001037052600001

  • EID of the result in the Scopus database

    2-s2.0-85163962434