Detection of Dangerous Driver Health Problems Using HOG-Autoencoder
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254726" target="_blank" >RIV/61989100:27240/23:10254726 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-031-40971-4_43" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-40971-4_43</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-40971-4_43" target="_blank" >10.1007/978-3-031-40971-4_43</a>
Alternative languages
Result language
angličtina
Original language name
Detection of Dangerous Driver Health Problems Using HOG-Autoencoder
Original language description
In this paper, we present a method that can be used to detect unexpected driver health problems (e.g. stroke, heart attack, epileptic or similar types of seizures). Obviously, in such cases, the goal is to obtain the recognition results in the shortest possible time. Therefore, the main contribution of the presented method is the speed combined with satisfactory detection results. To achieve these goals, we use the HOG method for fast image feature extraction in the first step. In the second step, an autoencoder network is used to compress the features. Based on the autoencoder reconstruction error, it is then decided whether the driver's health condition is normal or abnormal. The results seem to be promising for the possible practical deployment.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes on Data Engineering and Communications Technologies. Volume 182
ISBN
978-3-031-40970-7
ISSN
2367-4512
e-ISSN
2367-4520
Number of pages
11
Pages from-to
454-464
Publisher name
Springer
Place of publication
Cham
Event location
Čiang Mai
Event date
Sep 6, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—