Remote sensing based forest cover classification using machine learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254642" target="_blank" >RIV/61989100:27240/24:10254642 - isvavai.cz</a>
Result on the web
<a href="https://www.nature.com/articles/s41598-023-50863-1" target="_blank" >https://www.nature.com/articles/s41598-023-50863-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-023-50863-1" target="_blank" >10.1038/s41598-023-50863-1</a>
Alternative languages
Result language
angličtina
Original language name
Remote sensing based forest cover classification using machine learning
Original language description
Pakistan falls significantly below the recommended forest coverage level of 20 to 30 percent of total area, with less than 6 percent of its land under forest cover. This deficiency is primarily attributed to illicit deforestation for wood and charcoal, coupled with a failure to embrace advanced techniques for forest estimation, monitoring, and supervision. Remote sensing techniques leveraging Sentinel-2 satellite images were employed. Both single-layer stacked images and temporal layer stacked images from various dates were utilized for forest classification. The application of an artificial neural network (ANN) supervised classification algorithm yielded notable results. Using a single-layer stacked image from Sentinel-2, an impressive 91.37% training overall accuracy and 0.865 kappa coefficient were achieved, along with 93.77% testing overall accuracy and a 0.902 kappa coefficient. Furthermore, the temporal layer stacked image approach demonstrated even better results. This method yielded 98.07% overall training accuracy, 97.75% overall testing accuracy, and kappa coefficients of 0.970 and 0.965, respectively. The random forest (RF) algorithm, when applied, achieved 99.12% overall training accuracy, 92.90% testing accuracy, and kappa coefficients of 0.986 and 0.882. Notably, with the temporal layer stacked image of the Sentinel-2 satellite, the RF algorithm reached exceptional performance with 99.79% training accuracy, 96.98% validation accuracy, and kappa coefficients of 0.996 and 0.954. In terms of forest cover estimation, the ANN algorithm identified 31.07% total forest coverage in the District Abbottabad region. In comparison, the RF algorithm recorded a slightly higher 31.17% of the total forested area. This research highlights the potential of advanced remote sensing techniques and machine learning algorithms in improving forest cover assessment and monitoring strategies. (C) 2024, The Author(s).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20200 - Electrical engineering, Electronic engineering, Information engineering
Result continuities
Project
—
Continuities
O - Projekt operacniho programu
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Scientific Reports
ISSN
2045-2322
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
—
UT code for WoS article
001163663800148
EID of the result in the Scopus database
2-s2.0-85181254477