All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

POF-based biosensors for cortisol detection in seawater as a tool for aquaculture systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255225" target="_blank" >RIV/61989100:27240/24:10255225 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/articles/s41598-024-63870-7" target="_blank" >https://www.nature.com/articles/s41598-024-63870-7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-024-63870-7" target="_blank" >10.1038/s41598-024-63870-7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    POF-based biosensors for cortisol detection in seawater as a tool for aquaculture systems

  • Original language description

    A surface plasmon resonance (SPR) phenomenon implemented via D-shaped polymer optical fiber (POF) is exploited to realize cortisol biosensors. In this work, two immonosensors are designed and developed for the qualitative as well as quantitative measurement of cortisol in artificial and real samples. The performances of the POF-based biosensors in cortisol recognition are achieved using different functionalization protocols to make the same antibody receptor layer over the SPR surface via cysteamine and lipoic acid, achieving a limit of detection (LOD) of 0.8 pg/mL and 0.2 pg/mL, respectively. More specifically, the use of cysteamine or lipoic acid changes the distance between the receptor layer and the SPR surface, improving the sensitivity at low concentrations of about one order of magnitude in the configuration based on lipoic acid. The LODs of both cortisol biosensors are achieved well competitively with other sensor systems but without the need for amplification or sample treatments. In order to obtain the selectivity tests, cholesterol and testosterone were used as interfering substances. Moreover, tests in simulated seawater were performed for the same cortisol concentration range achieved in buffer solution to assess the immunosensor response to the complex matrix. Finally, the developed cortisol biosensor was used in a real seawater sample to estimate the cortisol concentration value. The gold standard method has confirmed the estimated cortisol concentration value in real seawater samples. Liquid-liquid extraction was implemented to maximize the response of cortisol in liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis. (C) The Author(s) 2024.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20200 - Electrical engineering, Electronic engineering, Information engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

    2045-2322

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    11

  • Pages from-to

  • UT code for WoS article

    001244401200002

  • EID of the result in the Scopus database

    2-s2.0-85195533778