Torsional Vibration Adaptive Neural Network Fault-Tolerant Control of the Main Drive System for the Rolling Mill
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10255750" target="_blank" >RIV/61989100:27240/24:10255750 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27730/24:10255750
Result on the web
<a href="https://ieeexplore.ieee.org/document/10666763" target="_blank" >https://ieeexplore.ieee.org/document/10666763</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3454642" target="_blank" >10.1109/ACCESS.2024.3454642</a>
Alternative languages
Result language
angličtina
Original language name
Torsional Vibration Adaptive Neural Network Fault-Tolerant Control of the Main Drive System for the Rolling Mill
Original language description
The main drive system of the rolling mill often experiences torsional vibrations, which severely affect product quality, precision, and the service life of the transmission equipment. This paper investigates the torsional vibration suppression problem in the main drive system of the rolling mill, considering actuator faults, nonlinear friction, nonlinear damping, and model uncertainties. Based on the high-order fully actuated (HOFA) system approach, the main drive system of the rolling mill is transformed into a rolling mill main drive fully actuated system (RMMDFAS). Adaptive neural networks are introduced to address unknown uncertainties, and a continuous differentiable Gaussian error function is used to handle actuator faults. An adaptive neural network fault-tolerant control law for motor torque is proposed. The stability of the designed main drive torsional vibration system is rigorously proven, while maintaining the performance of the transformed states. Finally, the effectiveness and superiority of the proposed algorithm are verified through simulations.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20200 - Electrical engineering, Electronic engineering, Information engineering
Result continuities
Project
<a href="/en/project/TN02000025" target="_blank" >TN02000025: National Centre for Energy II</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Access
ISSN
2169-3536
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
Volume: 12, 2024
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
125585-125591
UT code for WoS article
001316077600001
EID of the result in the Scopus database
2-s2.0-85203529768