Reduce Power Energy Cost Using Hybrid Six Sigma Based on Fuzzy MADM: A Case Study in Mechanical Factory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256085" target="_blank" >RIV/61989100:27240/24:10256085 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/10497600" target="_blank" >https://ieeexplore.ieee.org/document/10497600</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3388202" target="_blank" >10.1109/ACCESS.2024.3388202</a>
Alternative languages
Result language
angličtina
Original language name
Reduce Power Energy Cost Using Hybrid Six Sigma Based on Fuzzy MADM: A Case Study in Mechanical Factory
Original language description
Production costs are always the top concern of company managers in improving production and business efficiency. The cost of energy is one of the major costs that manufacturing companies must pay. This research paper proposes a Hybrid Six Sigma method based on fuzzy Multi-Attribute Decision Making (MADM), Industry 4.0, and digital numerical control (DNC). A fuzzy MADM method to select problems to improve and build an Industry 4.0 system with Internet of Things (IoT) devices, calling for automatic machining programs using Radio Frequency Identification (RFID) systems and management. Manage production equipment maintenance system using a digital numerical control (DNC) system. Measuring industry 4.0 system user satisfaction in manufacturing using Partial Least Squares Structural Equation Modeling (PLS-SEM). The results of research on applying industry 4.0 techniques to the induction heat treatment process eliminate the dependence on worker skills and simplify the operation of the induction heat treatment process. Improve employee satisfaction with process operating conditions. Reduce the cost of electrical energy arising due to the coil maintenance system by applying the Industry 4.0 system. The result after the improvement is that the defect rate decreased from 47.2% to 4.9%. In terms of money, the reduction in losses due to defects is reduced from 6,593 USD per year to 549 USD per year. This research paper builds a sample continuous improvement model to apply to other production processes at other manufacturing companies in terms of applying industry 4.0 systems with IoT devices such as RFID and barcode readers in operations. automatically call the machining program of the machining machine and build an autonomous and preventive maintenance system using the industry 4.0 system to make improvements in process automation, smart data management, and analytics, using Internet of Things (IoT) to connect devices in the production process create a flexible production process.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Access
ISSN
2169-3536
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
27
Pages from-to
71379-71405
UT code for WoS article
001231439500001
EID of the result in the Scopus database
—