All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Vehicle Re-Identification Based on Multiple Magnetic Signatures Features Evaluation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256133" target="_blank" >RIV/61989100:27240/24:10256133 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10609373" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10609373</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2024.3433615" target="_blank" >10.1109/ACCESS.2024.3433615</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Vehicle Re-Identification Based on Multiple Magnetic Signatures Features Evaluation

  • Original language description

    In Intelligent Transportation Systems the identification and tracking of vehicles play an important role in enhancing traffic management, security, and overall road safety. Traditional means for vehicle re-identification rely solely on video-based systems which are not resilient to harsh environment conditions, suffer from visual obstructions, and are facing other challenges. To address these shortcomings and provide a more robust solution, alternative methods can be employed. This study addresses the gap in vehicle re-identification accuracy under harsh environmental conditions and visual obstructions faced by traditional video-based systems by integrating magnetic sensors into the road surface. The essence of this study revolves around a comprehensive comparison of various algorithms employed for feature extraction from registered magnetic field distortions. These distortions are treated as transient time series and various distance metrics are applied to calculate their similarity. Useful features are extracted and their classification performance is compared using a single neighbor classifier also taking into account calculation time. The validation experiments demonstrate the efficacy of presented approach in extracting critical features that hold the potential for successfully re-identifying same vehicles. For tested subset up to 90 % re-identification accuracy can be reached. The main contribution of this work involves determining which magnetic sensor axis to use-whether single or in combination-and identifying the most effective methods for feature extraction from the registered magnetic field distortions. Authors

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20205 - Automation and control systems

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    July 2024

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    13

  • Pages from-to

    102606-102618

  • UT code for WoS article

    001380690600042

  • EID of the result in the Scopus database

    2-s2.0-85199539511