All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A novel artificial intelligence based multistage controller for load frequency control in power systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256141" target="_blank" >RIV/61989100:27240/24:10256141 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27730/24:10256141

  • Result on the web

    <a href="https://www.nature.com/articles/s41598-024-81382-2" target="_blank" >https://www.nature.com/articles/s41598-024-81382-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-024-81382-2" target="_blank" >10.1038/s41598-024-81382-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A novel artificial intelligence based multistage controller for load frequency control in power systems

  • Original language description

    The imbalance between generated power and load demand often causes unwanted fluctuations in the frequency and tie-line power changes within a power system. To address this issue, a control process known as load frequency control (LFC) is essential. This study aims to optimize the parameters of the LFC controller for a two-area power system that includes a reheat thermal generator and a photovoltaic (PV) power plant. An innovative multi-stage TDn(1 + PI) controller is introduced to reduce the oscillations in frequency and tie-line power changes. This controller combines a tilt-derivative with an N filter (TDn) with a proportional-integral (PI) controller, which improves the system&apos;s response by correcting both steady-state errors and the rate of change. This design enhances the stability and speed of dynamic control systems. A new meta-heuristic optimization technique called bio-dynamic grasshopper optimization algorithm (BDGOA) is used for the first time to fine-tune the parameters of the proposed controller and improve its performance. The effectiveness of the controller is evaluated under various load demands, parameter variations, and nonlinearities. Comparisons with other controllers and optimization algorithms show that the BDGOA-TDn(1 + PI) controller significantly reduces overshoot in system frequency and tie-line power changes and achieves faster settling times for these oscillations. Simulation results demonstrate that the BDGOA-TDn(1 + PI) controller significantly outperforms conventional controllers, achieving a reduction in overshoot by 75%, faster settling times by 60%, and a lower integral of time-weighted absolute error by 50% under diverse operating conditions, including parameter variations and nonlinearities such as time delays and governor deadband effects.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20200 - Electrical engineering, Electronic engineering, Information engineering

Result continuities

  • Project

    <a href="/en/project/TN02000025" target="_blank" >TN02000025: National Centre for Energy II</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    32

  • Pages from-to

    1-32

  • UT code for WoS article

    001367267900007

  • EID of the result in the Scopus database

    2-s2.0-85210553882