All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The role of catalyst in hydrogen production: a critical review

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256191" target="_blank" >RIV/61989100:27240/24:10256191 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27730/24:10256191

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s10973-024-13753-w" target="_blank" >https://link.springer.com/article/10.1007/s10973-024-13753-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10973-024-13753-w" target="_blank" >10.1007/s10973-024-13753-w</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The role of catalyst in hydrogen production: a critical review

  • Original language description

    The increasing demand for hydrogen as an energy carrier requires the development of efficient and sustainable production strategies. Methane reforming is a widely used method for hydrogen production, and catalysts play a crucial role in optimizing this process. This paper provides a comprehensive review of the catalytic aspects of methane reforming, highlighting significant progress and recent advancements. After reviewing various research works, it was seen that the conversion of methane and carbon dioxide is influenced by the specific surface area of catalysts. It is observed that the catalysts with larger surface areas exhibit higher methane conversion rates, although exceptions are observed in the case of perovskites, which demonstrate good conversion efficiency despite their smaller size. Cobalt (Co) and nickel (Ni) are commonly employed in catalysts for achieving higher conversion rates. Other than that, various rare-earth catalysts were also evaluated in the paper. To further optimize the production strategy, several crucial points are identified. These include a comprehensive understanding of the reaction mechanisms for catalyst design, the integration of in situ characterization techniques for studying catalyst changes and active species, collaboration between theoretical calculations and experimental studies, and the development of highly efficient and stable catalysts. Emphasis is placed on exploring cost-effective options, such as nickel and other non-noble metal catalysts, while assessing their performance at low temperatures and in advanced reforming systems. With the increasing importance of hydrogen and syngas production, upgraded reforming systems are expected to flourish soon.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10400 - Chemical sciences

Result continuities

  • Project

    <a href="/en/project/TN02000025" target="_blank" >TN02000025: National Centre for Energy II</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of thermal analysis and calorimetry

  • ISSN

    1388-6150

  • e-ISSN

    1588-2926

  • Volume of the periodical

    149

  • Issue of the periodical within the volume

    24

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    14517-14534

  • UT code for WoS article

    001372719100001

  • EID of the result in the Scopus database