Automatic Hyperspectral Image Clustering Using Qutrit Differential Evolution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256315" target="_blank" >RIV/61989100:27240/24:10256315 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-981-97-7184-4_24" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-97-7184-4_24</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-97-7184-4_24" target="_blank" >10.1007/978-981-97-7184-4_24</a>
Alternative languages
Result language
angličtina
Original language name
Automatic Hyperspectral Image Clustering Using Qutrit Differential Evolution
Original language description
A hyperspectral image serves as a valuable data source for ground cover analysis. However, determining the optimum number of clusters in hyperspectral images faces challenges due to the "curse of dimensionality" and the unavailability of ground truth images. Therefore, employing unsupervised cluster detection methods proves more advantageous in practical scenarios. This paper introduces a qutrit differential evolution algorithm for automatic clustering of hyperspectral images. The proposed algorithm incorporates qutrit Hadamard gates for population initialization and qutrit NOT gates for mutation. A qutrit-based crossover operation is also implemented following the normalization principle. The results of the proposed qutrit differential evolution are compared with the classical and qubit differential evolution algorithms utilizing different statistical tests and the F score. The Adjusted Rand Index serves as the fitness function and is used to validate the clusters. In most cases, the proposed algorithm outperforms the competing algorithms and the K-means algorithm with predefined cluster numbers.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ADVANCES IN SWARM INTELLIGENCE, PT II, ICSI 2024
ISBN
978-981-9771-83-7
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
15
Pages from-to
280-294
Publisher name
SPRINGER-VERLAG SINGAPORE PTE LTD
Place of publication
SINGAPORE
Event location
Xining
Event date
Aug 23, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001308319900024