All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Automatic Hyperspectral Image Clustering Using Qutrit Differential Evolution

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10256315" target="_blank" >RIV/61989100:27240/24:10256315 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-981-97-7184-4_24" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-97-7184-4_24</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-97-7184-4_24" target="_blank" >10.1007/978-981-97-7184-4_24</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Automatic Hyperspectral Image Clustering Using Qutrit Differential Evolution

  • Original language description

    A hyperspectral image serves as a valuable data source for ground cover analysis. However, determining the optimum number of clusters in hyperspectral images faces challenges due to the &quot;curse of dimensionality&quot; and the unavailability of ground truth images. Therefore, employing unsupervised cluster detection methods proves more advantageous in practical scenarios. This paper introduces a qutrit differential evolution algorithm for automatic clustering of hyperspectral images. The proposed algorithm incorporates qutrit Hadamard gates for population initialization and qutrit NOT gates for mutation. A qutrit-based crossover operation is also implemented following the normalization principle. The results of the proposed qutrit differential evolution are compared with the classical and qubit differential evolution algorithms utilizing different statistical tests and the F score. The Adjusted Rand Index serves as the fitness function and is used to validate the clusters. In most cases, the proposed algorithm outperforms the competing algorithms and the K-means algorithm with predefined cluster numbers.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ADVANCES IN SWARM INTELLIGENCE, PT II, ICSI 2024

  • ISBN

    978-981-9771-83-7

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    15

  • Pages from-to

    280-294

  • Publisher name

    SPRINGER-VERLAG SINGAPORE PTE LTD

  • Place of publication

    SINGAPORE

  • Event location

    Xining

  • Event date

    Aug 23, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001308319900024