Particle Swarm Optimization and Differential Evolution for Derangement Problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10257261" target="_blank" >RIV/61989100:27240/24:10257261 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/abstract/document/10871873" target="_blank" >https://ieeexplore.ieee.org/abstract/document/10871873</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICNGN63705.2024.10871873" target="_blank" >10.1109/ICNGN63705.2024.10871873</a>
Alternative languages
Result language
angličtina
Original language name
Particle Swarm Optimization and Differential Evolution for Derangement Problems
Original language description
Combinatorial optimization involves solving problems that can be represented by combinatorial objects. Due to the complexity of these problems, exact solutions are difficult to obtain. Consequently, nature-inspired metaheuristics have been widely used to provide approximate solutions. While nature-inspired approaches have been extensively applied to general permutation and combination problems, there is limited exploration in solving constrained permutation problems, such as derangements. This paper investigates the use of Particle Swarm Optimization (PSO) and Differential Evolution (DE) to solve derangement problems. We introduce a novel, efficient algorithm that transforms arbitrary permutations into derangements and analyze its impact on the effectiveness of PSO and DE in solving these problems. The results contribute to the application of nature-inspired metaheuristics in constrained combinatorial optimization. Finally, we note the potential of constrained permutation problems to test nature-inspired metaheuristics. ©2024 IEEE.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
<a href="/en/project/GF22-34873K" target="_blank" >GF22-34873K: Constrained Multiobjective Optimization Based on Problem Landscape Analysis</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of The 3rd International Conference on Intelligent Computing and Next Generation Networks, ICNGN 2024 : November 23-25, 2024, Bangkok, Thailand
ISBN
979-8-3315-2923-9
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
—
Publisher name
IEEE
Place of publication
Piscataway
Event location
Bangkok
Event date
Nov 23, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—