All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Training Processes of Artificial Multilayer Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F06%3A00014526" target="_blank" >RIV/61989100:27350/06:00014526 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Training Processes of Artificial Multilayer Neural Networks

  • Original language description

    Artificial multilayer feed-forward neural networks are useful in many technical and scientific branches. For example, one of them is modeling and simulation. Before use any designed artificial neural network, we have to teach it for our task. The teaching process is also sometimes called training of neural network. During this teaching process some of many parameters of artificial neural network are adapted by data, which represent our task. For teaching process we can apply some special algorithms, like Back Propagation. However sometimes, during teaching process we can see situations, when is impossible stop teaching process, because error of teaching process is still "so big". The neural network can't adapt own parameters by all data, which represent our task. This paper describe some reasons of errors arise during the teaching process and also describe methods to eliminate some of these errors.

  • Czech name

    Učební metody umělých vrstvených neuronových sítí

  • Czech description

    Vrstvené umělé neuronové sítě jsou použitelné v mnoha technických a vědeckých odvětvích. Např. modelování a simulace. Před tím než začneme navrhovat neuronovou síť a používat ji k řešení konkrétních situací, musíme být schopni naučit daný typ sítě na daný problém. Během tohoto učebního procesu může nastat mnoho situací, které mohou komplikovat cestu k úspěšnému řešení. Proto je v tomto článku vybrán učicí algoritmus Back Propagation na, kterém jsou demonstrovány některé tyto situace.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BC - Theory and management systems

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    4th International Workshop on Earth Science and Technology

  • ISBN

    978-4-9902356-7-3

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    487-494

  • Publisher name

    Kyushu Univerzity

  • Place of publication

    Fukuoka

  • Event location

  • Event date

  • Type of event by nationality

  • UT code for WoS article