Artificial Neural Networks Application in Modal Analysis of Tires
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F13%3A86089082" target="_blank" >RIV/61989100:27350/13:86089082 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27360/13:86089082 RIV/61989100:27740/13:86089082
Result on the web
<a href="http://dx.doi.org/10.2478/msr-2013-0040" target="_blank" >http://dx.doi.org/10.2478/msr-2013-0040</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2478/msr-2013-0040" target="_blank" >10.2478/msr-2013-0040</a>
Alternative languages
Result language
angličtina
Original language name
Artificial Neural Networks Application in Modal Analysis of Tires
Original language description
The paper deals with the application of artificial neural networks (ANN) to tires' own frequency (OF) prediction depending on a tire construction. Experimental data of OF were obtained by electronic speckle pattern interferometry (ESPI). A very good conformity of both experimental and predicted data sets is presented here. The presented ANN method applied to ESPI experimental data can effectively help designers to optimize dimensions of tires from the point of view of their noise.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JJ - Other materials
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Measurement Science Review
ISSN
1335-8871
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
5
Country of publishing house
PL - POLAND
Number of pages
6
Pages from-to
273-278
UT code for WoS article
000326683300007
EID of the result in the Scopus database
—