All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

An experimental verification of particle flow ratio of high gradient magnetic separation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F16%3A86099568" target="_blank" >RIV/61989100:27350/16:86099568 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27360/16:86099568 RIV/61989100:27740/16:86099568 RIV/61989100:27760/16:86099568

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    An experimental verification of particle flow ratio of high gradient magnetic separation

  • Original language description

    The paper presents an experimental verification of magnetic separation particle flow ratio using the theoretical model. Steady state, laminar flow and a spherical magnetic particle (paramagnetic or weakly ferromagnetic) was assumed in the model. The magnetic behavior of the liquid and influence of the steel wool is neglected. From the mathematical model we have estimated that separation particle flow ratio is proportional to the square of the particle radius, inversely proportional to the velocity of the particles in liquid and directly proportional to the magnitude and the gradient of the magnetic field. The experimental verification was carried out using two new laboratory magnetic separators constructed at the Department of Physics, VŠB-Technical University of Ostrava. These separators are mounted with two or four NdFeB permanent magnets symmetrically around a central separation cell. High magnetic field gradient (HMFG) inside of the separation cell is created using steel wool. Separation processes using both separators were the following: prepared suspension was brought into the separator using the peristaltic pump after its homogenization by ultrasound in ultrasonic cleaner. The suspension further continued through the separation cell filled with steel wool to the collection vessel, where the separation process finished. In our case, the separation process for each sample underwent five cycles. The particle flow ratio of the high gradient magnetic separation (HGMS) process was tested on a water suspension containing weakly magnetic Fe2O3 nano/micro-particles by the turbidimetry, i.e., measurement of intensity of scattered light. Three grain size fractions were prepared-coarse, medium and fine, mean particle size about 5μm, 1.4μ m and 100 nm, respectively. (C) 2016 American Scientific Publishers All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BM - Solid-state physics and magnetism

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LO1203" target="_blank" >LO1203: Regional Materials Science and Technology Centre - Feasibility Program</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Advanced Science Letters

  • ISSN

    1936-6612

  • e-ISSN

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    5

  • Pages from-to

    611-615

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-84985897933