All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The impact of co-combustion of polyethylene plastics and wood in a small residential boiler on emissions of gaseous pollutants, particulate matter, PAHs and 1,3,5- triphenylbenzene

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F17%3A10236524" target="_blank" >RIV/61989100:27350/17:10236524 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27650/17:10236524 RIV/00216224:14310/18:00102334 RIV/61989100:27650/18:10236524

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.chemosphere.2017.12.127" target="_blank" >http://dx.doi.org/10.1016/j.chemosphere.2017.12.127</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chemosphere.2017.12.127" target="_blank" >10.1016/j.chemosphere.2017.12.127</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The impact of co-combustion of polyethylene plastics and wood in a small residential boiler on emissions of gaseous pollutants, particulate matter, PAHs and 1,3,5- triphenylbenzene

  • Original language description

    The aim of this study was to simulate a banned but widely spread practice of co-combustion of plastic with wood in a small residential boiler and to quantify its impact on emissions of gaseous pollutants, particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and 1,3,5-triphenylbenzene (135TPB), a new tracer of polyethylene plastic combustion. Supermarket polyethylene shopping bags (PE) and polyethylene terephthalate bottles (PET) were burnt as supplementary fuels with beech logs (BL) in an old-type 20 kW over-fire boiler both at a nominal and reduced heat output. An impact of co-combustion was more pronounced at the nominal heat output: an increase in emissions of PM, total organic carbon (TOC), toxic equivalent (TEQ) of 7 carcinogenic PAHs (c-PAHs) and a higher ratio of c-PAHs TEQ in particulate phase was observed during co-combustion of both plastics. 135TPB was found in emissions from both plastics both at a nominal and reduced output. In contrast to findings reported in the literature, 135TPB was a dominant compound detected by mass spectrometry on m/z 306 exclusively in emissions from co-combustion of PE. Surprisingly, six other even more abundant compounds of unknown identity were found on this m/z in emissions from co-combustion of PET. One of these unknown compounds was identified as p-quaterphenyl (pQ). Principal component analysis revealed strong correlation among 135TPB, pQ and five unknown compounds. pQ seems to be suitable tracers of polyethylene terephthalate plastic co-combustion, while 135TPB proved its suitability to be an all-purpose tracer of polyethylene plastics combustion.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20704 - Energy and fuels

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Chemosphere

  • ISSN

    0045-6535

  • e-ISSN

  • Volume of the periodical

    196

  • Issue of the periodical within the volume

    April 2018

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    7

  • Pages from-to

    18-24

  • UT code for WoS article

    000425075500003

  • EID of the result in the Scopus database

    2-s2.0-85039707526