All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Mineralogical controls on antimony and arsenic mobility during tetrahedrite-tennantite weathering at historic mine sites Špania Dolina-Piesky and Ľubietová-Svätodušná, Slovakia

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F17%3A10238589" target="_blank" >RIV/61989100:27350/17:10238589 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.degruyter.com/view/j/ammin.2017.102.issue-5/am-2017-5616/am-2017-5616.xml" target="_blank" >https://www.degruyter.com/view/j/ammin.2017.102.issue-5/am-2017-5616/am-2017-5616.xml</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2138/am-2017-5616" target="_blank" >10.2138/am-2017-5616</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Mineralogical controls on antimony and arsenic mobility during tetrahedrite-tennantite weathering at historic mine sites Špania Dolina-Piesky and Ľubietová-Svätodušná, Slovakia

  • Original language description

    The legacy of copper (Cu) mining at Špania Dolina-Piesky and Ľubietová-Svätodušná (central Slovakia) is waste rock and soil, surface waters, and groundwaters contaminated with antimony (Sb), arsenic (As), Cu, and other metals. Copper ore is hosted in chalcopyrite (CuFeS2) and sulfosalt solid-solution tetrahedrite-tennantite {Cu6[Cu4(Fe,Zn)2]Sb4S13–Cu6[Cu4(Fe,Zn)2]As4S13} that show widespread oxidation characteristic by olive-green color secondary minerals. Tetrahedrite-tennantite can be a significant source of As and Sb contamination. Synchrotron-based m-XRD, m-XRF, and m-XANES combined with electron microprobe analyses have been used to determine the mineralogy, chemical composition, element distribution, and Sb speciation in tetrahedrite-tennantite oxidation products in waste rock. Our results show that the mobility of Sb is limited by the formation of oxidation products such as tripuhyite and roméite group mineral containing 36.54 wt% Sb for samples where the primary mineral chemical composition is close to tetrahedrite end-member. Antimony K-edge m-XANES spectra of these oxidation products indicate that the predominant Sb oxidation state is 5+. Arsenic and Cu are also hosted by amorphous phases containing 6.23 wt% Sb on average and these are intergrown with tripuhyite and roméite. Antimony in this environment is not very mobile, meaning it is not easily released from solid phases to water, especially compared to As, Cu, and S. For samples where the primary sulfosalt is close to tennantite composition, the oxidation products associated with tennantite relicts contain 2.43 wt% Sb and are amorphous. The variable solubility of the secondary minerals that have been identified is expected to influence mobility of Sb and As in near-surface environment.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10504 - Mineralogy

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    American Mineralogist

  • ISSN

    0003-004X

  • e-ISSN

  • Volume of the periodical

    102

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    1091-1100

  • UT code for WoS article

    000401111500018

  • EID of the result in the Scopus database

    2-s2.0-85019352220