All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Porous coatings containing copper and phosphorus obtained by plasma electrolytic oxidation of titanium

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F20%3A10244815" target="_blank" >RIV/61989100:27350/20:10244815 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1944/13/4/828" target="_blank" >https://www.mdpi.com/1996-1944/13/4/828</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma13040828" target="_blank" >10.3390/ma13040828</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Porous coatings containing copper and phosphorus obtained by plasma electrolytic oxidation of titanium

  • Original language description

    To fabricate porous copper coatings on titanium, we used the process of plasma electrolytic oxidation (PEO) with voltage control. For all experiments, the three-phase step-up transformer with six-diode Graetz bridge was used. The voltage and the amount of salt used in the electrolyte were determined so as to obtain porous coatings. Within the framework of this study, the PEO process was carried out at a voltage of 450 VRMS in four electrolytes containing the salt as copper(II) nitrate(V) trihydrate. Moreover, we showed that the content of salt in the electrolyte needed to obtain a porous PEO coating was in the range 300-600 g/dm3. After exceeding this amount of salts in the electrolyte, some inclusions on the sample surface were observed. It is worth noting that this limitation of the amount of salts in the electrolyte was not connected with the maximum solubility of copper(II) nitrate(V) trihydrate in the concentrated (85%) orthophosphoric acid. To characterize the obtained coatings, numerous techniques were used. In this work, we used scanning electron microscopy (SEM) coupled with electron-dispersive X-ray spectroscopy (EDS), conducted surface analysis using confocal laser scanning microscopy (CLSM), and studied the surface layer chemical composition of the obtained coatings by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), glow discharge of optical emission spectroscopy (GDOES), and biological tests. It was found that the higher the concentration of Cu(NO3)2.3H2O in the electrolyte, the higher the roughness of the coatings, which may be described by 3D roughness parameters, such as &lt;italic&gt;Sa&lt;/italic&gt; (1.17-1.90 μm) and Sp (7.62-13.91 μm). The thicknesses of PEO coatings obtained in the electrolyte with 300-600 g/dm3 Cu(NO3) 2.3H2O were in the range 7.8 to 10 μm. The Cu/P ratio of the whole volume of coating measured by EDS was in the range 0.05-0.12, while the range for the top layer (measured using XPS) was 0.17-0.24. The atomic concentration of copper (0.54-0.72 at%) resulted in antibacterial and fungicidal properties in the fabricated coatings, which can be dedicated to biocompatible applications. (C) 2020 by the authors.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20506 - Coating and films

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    000520419300019

  • EID of the result in the Scopus database

    2-s2.0-85082007420