Mineralogy of the coal waste dumps from the Czech part of the Upper Silesian Basin: Emphasized role of halides for element mobility
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27350%2F23%3A10251536" target="_blank" >RIV/61989100:27350/23:10251536 - isvavai.cz</a>
Alternative codes found
RIV/61989592:15310/22:73615050
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0166516222002142" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0166516222002142</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.coal.2022.104138" target="_blank" >10.1016/j.coal.2022.104138</a>
Alternative languages
Result language
angličtina
Original language name
Mineralogy of the coal waste dumps from the Czech part of the Upper Silesian Basin: Emphasized role of halides for element mobility
Original language description
Both unburning and burning coal mine dumps present serious hazards to the natural environment and human health. Bituminous coal has been produced in the Czech part of the Upper Silesian Basin since 18th century, with total production over 100 million metric tons of waste material (barren rock) deposited in dumps. Today, each dump has undergone remediation and reclamation works, and many of them were totaly removed. Only three dumps with signs of thermal activity (burning) remain, with the Heřmanice dump as the most important. The powder X-ray diffraction (XRD) in combination with electron dispersive spectroscopy (EDS) and backscattered electron (BSE) imaging were applied to identify and describe the products of both unburning and burning dumps. The ones without thermal activity released mostly sulfates such as jarosite group minerals, hexahydrite, ferrohexahydrite, gypsum, thenardite, konyanite, and baryte due to pyrite weathering processes, accompanied by ferrihydrite, schwertmannite, goethite, and aragonite. As expected, the mineral associations of thermally active dumps were more variable. Apart from hot gas vent products such as sulfur, salammoniac, and cryptohalite, we identified a zoned sulfate cap (crust) with an accumulation of newly formed phases (e.g., aluminopyracmonite, pyracmonite, godovikovite, mascagnite, koktaite, boussingaultite, and clairite). Both the gas vents and sulfate crust contained a number of rare and exotic phases, such as Bi, bismuthinite, demicheleite-(Br), demicheleite-(I), fluorite, selenium, NH4Br, NH4I, BiOCl, BiBr3, BiI3, native iodine, CdS, CdIn2S4, (NH4,K)AlF4, (NH4,K)3AlF6, Ce-dominant REE-sulfate, and others. Since coal ash and barren rock are not geochemicaly anomalous, the presence of such various phases could be atributed to the very effective leaching and transport of chemical elements by halide elements, which originated in brines in the roof of the Carboniferous rocks circulating in the strata prior to extraction and emplacement in the dump.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10511 - Environmental sciences (social aspects to be 5.7)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Coal Geology
ISSN
0166-5162
e-ISSN
0166-5162
Volume of the periodical
264
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
29
Pages from-to
—
UT code for WoS article
000911573400001
EID of the result in the Scopus database
2-s2.0-85141802776