Application of Artificial Neural Networks in Chosen Glass Laminates Properties Prediction
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F10%3A86076160" target="_blank" >RIV/61989100:27360/10:86076160 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Application of Artificial Neural Networks in Chosen Glass Laminates Properties Prediction
Original language description
The article deals with applications of the artificial neural networks (ANN) at the evaluation of chosen material's properties (sample thickness, sample shape) measured by electronic speckle pattern interferometry (ESPI). We have investigated the dependence of the generated mode frequency as a function of sample thickness as well as the sample shape of glass laminate samples. Obtained experimental results for differently shaped glass laminate samples are compared with those of artificial neural networksand finite element method (FEM) simulation. The coincidence of both experimental and simulated results is very good.
Czech name
—
Czech description
—
Classification
Type
A - Audiovisual production
CEP classification
JG - Metallurgy, metal materials
OECD FORD branch
—
Result continuities
Project
—
Continuities
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
ISBN
—
Place of publication
—
Publisher/client name
—
Version
—
Carrier ID
—