Synthesis of Composite Photocatalytic Nanoparticles ZnO.mSiO2 Using New Aerosol Method
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F16%3A86099911" target="_blank" >RIV/61989100:27360/16:86099911 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27640/16:86099911
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Synthesis of Composite Photocatalytic Nanoparticles ZnO.mSiO2 Using New Aerosol Method
Original language description
In this work we describe new aerosol method of synthesis of photocatalytic powder of composite nanoparticles ZnO.mSiO2. The zinc acetate solution (Zn(Ac)2) in specific concentration was sonicated into aerosol microdroplets with an average size of 3.5 μm in the Omron NE-U17 nebulizer. These were subsequently transported by flowing air into the intensively stirred solution of sodium waterglass with modulus 3. After impact of these aerosol "microreactors Zn(Ac)2" the two liquid sollutions of reactants produced composite nanoparticles ZnO.mSiO2. As the amount of Zn(Ac)2 in a microdroplet is limited, so is the extent of the precipitation reaction and the nanoparticle diameter can be regulated by reactant concentration in the liquid dispersion. The final nanopowder with particles diameter of approx. 8 nm shows higher photocatalytic activity than TiO2 Evonik P25 standard and repeated tests also demonstrate good photo corrosion resistance. The results confirmed good efficiency of aerosol synthesis, especially when preparing nanoparticles of few nanometers in size. However, disproportion between the predicted size of nanoparticles around 20 nm and the real value of approx. 8 nm remains the objective of further research. To obtain more realistic size characteristics of the final nanoparticles, the balance calculation method, which overestimated the size of the nanoparticles over ten times, must be improved. According to our current experience, there are several ways, which could bring the solution to this problem, among which better incorporation of the reaction kinetics and the equilibrium parameters into the calculation seems the most promising. It is very likely that at the moment of a droplet impact, when the two solutions get in contact, multiple nucleation of future nanoparticles starts at the interface.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
JI - Composite materials
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/LO1203" target="_blank" >LO1203: Regional Materials Science and Technology Centre - Feasibility Program</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Hutnické listy
ISSN
0018-8069
e-ISSN
—
Volume of the periodical
6
Issue of the periodical within the volume
69
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
5
Pages from-to
68-72
UT code for WoS article
—
EID of the result in the Scopus database
—