All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Toxicity of the zinc oxide and vermiculite/zinc oxide nanomaterials

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F19%3A10236984" target="_blank" >RIV/61989100:27360/19:10236984 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27640/19:10236984

  • Result on the web

    <a href="https://www.ingentaconnect.com/content/asp/jnn/2019/00000019/00000005/art00070;jsessionid=1oq5bkfg1286u.x-ic-live-03" target="_blank" >https://www.ingentaconnect.com/content/asp/jnn/2019/00000019/00000005/art00070;jsessionid=1oq5bkfg1286u.x-ic-live-03</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1166/jnn.2019.15845" target="_blank" >10.1166/jnn.2019.15845</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Toxicity of the zinc oxide and vermiculite/zinc oxide nanomaterials

  • Original language description

    Nanomaterials and nanocomposite materials on the base of zinc oxide (ZnO) are being produced and applied in our daily life at a rapid pace mainly as additives to the different polymer materials. The antibacterial behaviors of ZnO nanoparticles are intensively studied but related health and environmental toxicity assessments are lagging behind. The aim of this work was evaluated the toxic effect of self-synthesized samples (ZnO nanoparticles, vermiculite/ZnO nanocomposite) and one commercial sample of the ZnO nanoparticles, to induce oxidative stress via lipid peroxidation. This ability is one of the indicators of material toxicity. The toxicity results were compared with the results of titanium dioxide (TiO2) nanoparticles as a validated toxic standard. The effect of the major nanoparticles properties as particle and crystallite size, shape, specific phase and composition were evaluated using the dynamic laser diffraction, scanning electron microscopy and X-ray diffraction analysis. The attention was also focused on the influence of the vermiculite (as matrix of nanocomposite samples) and temperature of the nanostructured materials preparation. All samples containing vermiculite are not able to induce peroxidation of lipids in comparison to TiO2 nanoparticles. However, samples of ZnO nanoparticles demonstrate the ability to induce oxidative stress via lipid peroxidation, which decreases with the increasing temperature of preparation and for commercial ZnO was higher than for prepared ZnO nanoparticles.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Result continuities

  • Project

    <a href="/en/project/LO1203" target="_blank" >LO1203: Regional Materials Science and Technology Centre - Feasibility Program</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of nanoscience and nanotechnology

  • ISSN

    1533-4880

  • e-ISSN

  • Volume of the periodical

    19

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    6

  • Pages from-to

    2977-2982

  • UT code for WoS article

    000458402700070

  • EID of the result in the Scopus database