Optimizing the microstructure of low-REM Nd-Fe-B sintered magnet using Dy3Co0.6Cu0.4Hx addition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F19%3A10244337" target="_blank" >RIV/61989100:27360/19:10244337 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Optimizing the microstructure of low-REM Nd-Fe-B sintered magnet using Dy3Co0.6Cu0.4Hx addition
Original language description
In recent years, the application of various additions (hydrides, oxides, intermetallic compounds, etc.) to powder mixtures for manufacturing Nd-Fe-B magnets shows promise as the method that allows one to increase the hysteretic characteristics of the magnets at the expense of realized grain-boundary diffusion and grain-boundary structuring processes. The hysteretic characteristics of sintered Nd-Fe-B magnets are highly sensitive to their microstructure and composition of phases. This paper is focused on the coercivity enhancement of the near-stoichiometric Nd2Fe14B-based magnet by optimizing microstructure, which included processes of grain boundary diffusion and grain boundary structuring via the application of hydrogenated Dy3Co0.6Cu0.4Hx compound added to the powder mixture. The base alloy having the composition Nd-24.0, Pr-6.5, Dy-0.5, B-1.0, Al-0.2, Fe-balance was prepared by strip-casting technique and subjected to hydrogen decrepitation during heating to 270 oC in a hydrogen flow at a pressure of 0.1 MPa and subsequent 1 h holding at this temperature. Dy3Co0.6Cu0.4 alloy was prepared by arc melting in an argon atmosphere and subjected to homogenizing annealing at 600 oC for 90 h. The subsequent hydrogenation under the conditions used for the decrepitation of the strip-cast alloy. The phase composition of Dy3Co0.6Cu0.4 was studied by X-ray diffraction analysis, DTA and scanning electron microscopy, electron microprobe analysis. Additions of the hydrogenated compound to Nd-Fe-B-based sintered magnets allow us to manufacture magnets with Br = 1.34 T and jHc = 1120 kA/m. The microstructure, phase composition and distributions of REM, Co, Cu for the prepared magnets were investigated by SEM/EDX method. Stability of structure-sensitive parameter, namely, the coercive force jHc of the sintered magnet prepared with 2 wt% of Dy3Co0.6Cu0.4Hx addition was studied. (C) 2019 TANGER Ltd., Ostrava.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20500 - Materials engineering
Result continuities
Project
<a href="/en/project/LTARF18031" target="_blank" >LTARF18031: Development of physico-chemical and engineering foundations for the initiation of innovative resources-economy technology of high-power and high-coercivity (Nd,R)-Fe-B (R = Pr, Tb, Dy, Ho) low-REM permanent magnets</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
METAL 2019 : conference proceedings : peer reviewed : 28th International Conference on Metallurgy and Materials : May 22nd-24th 2019, Hotel Voronez I, Brno, Czech Republic, EU
ISBN
978-80-87294-92-5
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
1663-1670
Publisher name
Tanger
Place of publication
Ostrava
Event location
Brno
Event date
May 22, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—