All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A case study on microwave pyrolysis of waste tyres and cocoa pod husk; effect on quantity and quality of utilizable products

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F22%3A10248287" target="_blank" >RIV/61989100:27360/22:10248287 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27710/22:10248287

  • Result on the web

    <a href="https://doi.org/10.1016/j.jece.2021.106917" target="_blank" >https://doi.org/10.1016/j.jece.2021.106917</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jece.2021.106917" target="_blank" >10.1016/j.jece.2021.106917</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A case study on microwave pyrolysis of waste tyres and cocoa pod husk; effect on quantity and quality of utilizable products

  • Original language description

    Disposal of huge amounts of diverse wastes for reduced costs accompanied with gaining of energy and valuable chemicals is an eager topic in waste-to-energy and fuel business. Microwave pyrolysis is a thermochemical route providing such benefits. Waste scrap tyres (ST) and cocoa pod husk (CPH) as polymer and biomass representatives were pyrolyzed in microwave reactor at 440 W power for 30 min. Quantity and quality of pyrolysis products (gas, oil, and carbon black) were investigated. It was revealed, while set microwave pyrolysis conditions are sufficient for maximum decomposition of ST to pyrolysis products, it is necessary to optimize them for CPH. The gas produced by microwave pyrolysis of ST contains more H2 and CH4 than from conventional pyrolysis, thus, microwave pyrolysis is an effective tool for production of a fuel gas. The oil obtained by ST microwave pyrolysis is a complex mixture of mostly nonpolar aromatic compounds (toluene, benzene, limonene, styrene, o-xylene), while the oil obtained by CPH microwave pyrolysis contains mainly p-cresol, phenol and its derivatives. The ST-derived carbon black shows a well-established large-volume mesoporous-macroporous structure. The CPH-derived carbon black is a low-volume macroporous material with very well-developed microporosity. A higher gross calorific value of microwave ST-derived carbon black in comparison to conventionally prepared one is caused by its higher graphitization rate. Since the surface of ST-derived carbon black is more polar than CPH-derived one and with respect to chemical purity, it could be more suitable adsorbent for polar volatile organic compounds from gaseous emissions. It is necessary to develop a microporosity in ST-derived carbon black.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10400 - Chemical sciences

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000853" target="_blank" >EF16_019/0000853: Institute of Environmental Technology - Excellent Research</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Environmental Chemical Engineering

  • ISSN

    2213-3437

  • e-ISSN

    2213-3437

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    1-12

  • UT code for WoS article

    000730999300008

  • EID of the result in the Scopus database