COMPARISON OF LINEAR REGRESSION MODELS OF THERMOPHYSICAL PROPERTIES WITH MODELS BASED ON MACHINE LEARNING
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F22%3A10251665" target="_blank" >RIV/61989100:27360/22:10251665 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27710/22:10251665
Result on the web
<a href="https://doi.org/10.37904/metal.2022.4451" target="_blank" >https://doi.org/10.37904/metal.2022.4451</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37904/metal.2022.4451" target="_blank" >10.37904/metal.2022.4451</a>
Alternative languages
Result language
angličtina
Original language name
COMPARISON OF LINEAR REGRESSION MODELS OF THERMOPHYSICAL PROPERTIES WITH MODELS BASED ON MACHINE LEARNING
Original language description
The paper compares classical models for determining the thermophysical properties of steels based primarily on empirical equations derived using linear regression methods with models created using machine learning methods. The selected investigated quantities include phase transformation temperatures, specific heat capacity, coefficient of thermal expansion. The results of both approaches are verified on the measured data by methods of thermal analysis such as differential scanning calorimetry, differential thermal analysis and dilatometry. The methods are evaluated both in terms of the accuracy of predictions and in terms of the adequacy of use for a specific purpose, or in terms of the complexity of creating and using the model.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20500 - Materials engineering
Result continuities
Project
<a href="/en/project/EF17_049%2F0008399" target="_blank" >EF17_049/0008399: Development of inter-sector cooperation of RMSTC with the application sphere in the field of advanced research and innovations of classical metal materials and technologies using modelling methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
METAL 2022 : 31st International Conference on Metallurgy and Materials : conference proceedings : May 18 - 19, 2022, OREA Congress Hotel Brno, Czech Republic, EU
ISBN
978-80-88365-06-8
ISSN
2694-9296
e-ISSN
—
Number of pages
6
Pages from-to
128-133
Publisher name
Tanger
Place of publication
Ostrava
Event location
Brno
Event date
May 18, 2022
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—