All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

COMPARISON OF LINEAR REGRESSION MODELS OF THERMOPHYSICAL PROPERTIES WITH MODELS BASED ON MACHINE LEARNING

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F22%3A10251665" target="_blank" >RIV/61989100:27360/22:10251665 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27710/22:10251665

  • Result on the web

    <a href="https://doi.org/10.37904/metal.2022.4451" target="_blank" >https://doi.org/10.37904/metal.2022.4451</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.37904/metal.2022.4451" target="_blank" >10.37904/metal.2022.4451</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    COMPARISON OF LINEAR REGRESSION MODELS OF THERMOPHYSICAL PROPERTIES WITH MODELS BASED ON MACHINE LEARNING

  • Original language description

    The paper compares classical models for determining the thermophysical properties of steels based primarily on empirical equations derived using linear regression methods with models created using machine learning methods. The selected investigated quantities include phase transformation temperatures, specific heat capacity, coefficient of thermal expansion. The results of both approaches are verified on the measured data by methods of thermal analysis such as differential scanning calorimetry, differential thermal analysis and dilatometry. The methods are evaluated both in terms of the accuracy of predictions and in terms of the adequacy of use for a specific purpose, or in terms of the complexity of creating and using the model.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20500 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008399" target="_blank" >EF17_049/0008399: Development of inter-sector cooperation of RMSTC with the application sphere in the field of advanced research and innovations of classical metal materials and technologies using modelling methods</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    METAL 2022 : 31st International Conference on Metallurgy and Materials : conference proceedings : May 18 - 19, 2022, OREA Congress Hotel Brno, Czech Republic, EU

  • ISBN

    978-80-88365-06-8

  • ISSN

    2694-9296

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    128-133

  • Publisher name

    Tanger

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    May 18, 2022

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article