All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Silver modified TiO2 and melem/g-C3N4: preparation, characterization, and photodegradation activity against model dye acid orange 7

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F22%3A10251910" target="_blank" >RIV/61989100:27360/22:10251910 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27650/22:10251910 RIV/61989100:27640/22:10251910 RIV/61989100:27240/22:10251910

  • Result on the web

    <a href="https://atomdec.info/intsymp-2" target="_blank" >https://atomdec.info/intsymp-2</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Silver modified TiO2 and melem/g-C3N4: preparation, characterization, and photodegradation activity against model dye acid orange 7

  • Original language description

    In this work, we paid our attention to presenting the results of the two interesting semicon-ductor materials: TiO2, and melem/g-C3N4, and tested their performances as photocatalysts forthe degradation of the model acid orange dye (AO7). A wet, easy chemical, and low-temperature approach for creating ca. 5 nm-sized Ag NPs spheres (Ag content: 0.5, 1.0, and 2.5wt.%) were developed. Various complementary techniques along with: X-ray powder diffraction(XRD), scanning (SEM) and transmission (TEM) electron microscopy, X-ray energy dispersivespectroscopy (EDS), photoluminescence (PL), and UV-Vis diffuse reflection (UV-Vis DRS)spectroscopy were used to thoroughly characterize the synthesized powder materials. All mate-rials were examined as potential photocatalysts using the AO7 photodegradation methodology.To compare the photodegradation tests, two separate lamps with wavelengths of 368 nm (UVlight) and 420 nm (VIS light) were used. The surface modification of both TiO2 and melem/g-C3N4 materials with 0.5 wt% Ag revealed the best photocatalytic performances under UV andVIS light. For samples: TiO2 and melem/g-C3N4 containing 0.5 wt% Ag, photodegradation ac-tivities using a UV lamp (3 h, 368 nm irradiation) exceeded 95 and 94%, respectively. After 3hours of irradiation, the materials showing the highest photoactivities were melem/g-C3N4 with0.5 and 1 wt. Ag, which displayed 98% activity under the irradiation with VIS light. Our re-search provides a unique, environmentally friendly, and cost-effective chemical method for pro-ducing photocatalysts suited for the degradation of organic pollutants in wastewater treatment.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů