All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimizing Thermomechanical Processing of Bimetallic Laminates

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F23%3A10252461" target="_blank" >RIV/61989100:27360/23:10252461 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000987492800001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000987492800001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma16093480" target="_blank" >10.3390/ma16093480</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimizing Thermomechanical Processing of Bimetallic Laminates

  • Original language description

    Thermomechanical processing combining plastic deformation and heat treatment is a favorable way to enhance the performance and lifetime of bimetallic laminates, especially those consisting of metals, which tend to form intermetallic layers on the interfaces when produced using methods involving increased temperatures. The presented work focuses on optimizing the conditions of thermomechanical treatment for an Al + Cu bimetallic laminate of innovative design involving a shear-strain-based deformation procedure (rotary swaging) and post-process heat treatment in order to acquire microstructures providing advantageous characteristics during the transfer of direct and alternate electric currents. The specific electric resistivity, as well as microhardness, was particularly affected by the structural features, e.g., grain size, the types of grain boundaries, and grain orientations, which were closely related to the applied thermomechanical procedure. The microhardness increased considerably after swaging (up to 116 HV02 for the Cu components), but it decreased after the subsequent heat treatment at 350 degrees C. Nevertheless, the heat-treated laminates still featured increased mechanical properties. The measured electric characteristics for DC transfer were the most favorable for the heat-treated 15 mm bimetallic laminate featuring the lowest measured specific electric resistivity of 22.70 x 10(-9) Omega m, while the 10 mm bimetallic laminates exhibited advantageous behavior during AC transfer due to a very low power loss coefficient of 1.001.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20500 - Materials engineering

Result continuities

  • Project

    <a href="/en/project/GA22-11949S" target="_blank" >GA22-11949S: Nanotwins, functional properties driven by intensive plastic deformation</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    MATERIALS

  • ISSN

    1996-1944

  • e-ISSN

    1996-1944

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

    000987492800001

  • EID of the result in the Scopus database

    2-s2.0-85159337517