Physical Experiments and Numerical Simulations of the Influence of Turbulence Inhibitors and the Position of Ladle Shroud on the Steel Flow in an Asymmetric Five-Strand Tundish
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F23%3A10253456" target="_blank" >RIV/61989100:27360/23:10253456 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27710/23:10253456
Result on the web
<a href="https://www.mdpi.com/2075-4701/13/11/1821" target="_blank" >https://www.mdpi.com/2075-4701/13/11/1821</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/met13111821" target="_blank" >10.3390/met13111821</a>
Alternative languages
Result language
angličtina
Original language name
Physical Experiments and Numerical Simulations of the Influence of Turbulence Inhibitors and the Position of Ladle Shroud on the Steel Flow in an Asymmetric Five-Strand Tundish
Original language description
The submitted article deals with the use of physical and numerical modelling to study the process of the steel flow in an asymmetric five-strand tundish that continuously casts steel. For the purposes of physical modelling, a 1:4-scale plexiglass model was used as the operating tundish, and for numerical modelling, the geometry of the operating tundish was created on a 1:1 scale. A model liquid (water) was used in the physical modelling of the melt flow process, while liquid steel was used as the standard flowing medium in the numerical modelling. We assessed the relevant operating parameters influencing the characteristics of the flow of the bath in the tundish-the shape of the turbulence inhibitor, the position of the ladle shroud in relation to the turbulence inhibitor and the distance between the ladle shroud orifice and the bottom of the turbulence inhibitor. The preliminary results show that optimal steel flow characteristic results are achieved by using the TI3-C configuration. The results from both modelling methods achieved the same characteristics, therefore verifying the results of each other and demonstrating that when taken together, the results of physical and numerical modelling can be considered sufficiently informative.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20500 - Materials engineering
Result continuities
Project
<a href="/en/project/EF17_049%2F0008399" target="_blank" >EF17_049/0008399: Development of inter-sector cooperation of RMSTC with the application sphere in the field of advanced research and innovations of classical metal materials and technologies using modelling methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Metals
ISSN
2075-4701
e-ISSN
2075-4701
Volume of the periodical
13
Issue of the periodical within the volume
11
Country of publishing house
CH - SWITZERLAND
Number of pages
18
Pages from-to
—
UT code for WoS article
001113994000001
EID of the result in the Scopus database
—