Effect of chemical composition of silica sand on thermal dilatation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27360%2F23%3A10253890" target="_blank" >RIV/61989100:27360/23:10253890 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.37904/metal.2023.4682" target="_blank" >https://doi.org/10.37904/metal.2023.4682</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Effect of chemical composition of silica sand on thermal dilatation
Original language description
One of the factors influencing the surface quality of castings is the resulting thermal expansion when silica sands are used. This is characterised both by its high value compared to other non-silica sands, and by its typical discontinuous behaviour, leading in many cases to defects such as veining or increased surface roughness, which further lead to increased costs of processing the castings or, in extreme cases, to scrap pieces. The amount of thermal expansion of silica sand is influenced by various factors, including granulometric composition and chemical purity. It is the SiO2 content of the sand that contributes significantly to the degree of dilation, and which can vary depending on grain size alone. Two silica sand samples from the same locality of origin with different mean grain sizes were evaluated. The granulometric composition as well as the SiO2 and impurity content were evaluated by SEM analysis and XRFS and their effect on the linear thermal expansion. The effect of grain size on the final SiO2 content was observed, with sands of the same origin with larger grains containing 1.3% more SiO2 and achieving 36.8% higher dilatation. This combination increases the susceptibility of the sand, and hence the resulting moulding mixture, to the formation of foundry defects from braked stress as veining.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20500 - Materials engineering
Result continuities
Project
<a href="/en/project/EF17_049%2F0008399" target="_blank" >EF17_049/0008399: Development of inter-sector cooperation of RMSTC with the application sphere in the field of advanced research and innovations of classical metal materials and technologies using modelling methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
METAL 2023 : 32nd International Conference on Metallurgy and Materials : conference proceedings : May 17–19, 2023, OREA Congress Hotel Brno, Czech Republic, EU
ISBN
978-80-88365-12-9
ISSN
2694-9296
e-ISSN
—
Number of pages
5
Pages from-to
84-88
Publisher name
Tanger
Place of publication
Ostrava
Event location
Brno
Event date
May 17, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—