Statistical analysis of a smoothing filter based on fuzzy transform
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F11%3A86079337" target="_blank" >RIV/61989100:27510/11:86079337 - isvavai.cz</a>
Alternative codes found
RIV/61988987:17610/11:A12012TA
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Statistical analysis of a smoothing filter based on fuzzy transform
Original language description
The paper is devoted to the smoothing of discrete functions using the fuzzy transform (shortly, Ftransform) introduced by Perfilieva in [1]. We generalize a smoothing filter based on the fuzzy transform proposed in [2] to obtain a better control on the smoothed functions. For this purpose, a generalization of the concept of fuzzy partition is suggested and the smoothing filter is defined as a combination of the direct discrete F-transform and a slightly modified inverse continuous F-transform. Statistical properties including the description of the white noise reduction and the asymptotic expression of Bias and Var are investigated and discussed.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 7th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-2011) and LFA-2011, Advances in Intelligent Systems Research
ISBN
978-90-78677-00-0
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
472-479
Publisher name
Atlantis Press
Place of publication
Paris
Event location
Aix-Les-Bains
Event date
Jul 18, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—