Forecasting AUD/USD exchange rate with RBF neural network combined with evolutionary Approach and unsupervised learning
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F14%3A86091225" target="_blank" >RIV/61989100:27510/14:86091225 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Forecasting AUD/USD exchange rate with RBF neural network combined with evolutionary Approach and unsupervised learning
Original language description
In this paper, authors apply feed forward artificial neural network (ANN) of RBF type into the process of forecasting the future value of AUD/USD currency pair. Except for the standard RBF, authors also test the custumised version of this NN combined with other techniques of the ML. They add the evolutionary approach into the ANN and also combine the standard algorithm for adapting weights of the ANN with an unsupervised clustering algorithm called Kmeans. Finally, all of these methods are compared andcontrasted.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/7AMB14PL029" target="_blank" >7AMB14PL029: Multiagent approach in designing enterprise systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Informační technologie pro praxi 2014 : VŠB-TUO, Faculty of Economics, 9th-10th October 2014
ISBN
978-80-248-3555-6
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
57-66
Publisher name
VŠB-Technical University of Ostrava
Place of publication
Ostrava
Event location
Ostrava
Event date
Oct 9, 2014
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—