Evaluation efficiency of large-scale data set with negative data: an artificial neural network approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F15%3A86096347" target="_blank" >RIV/61989100:27510/15:86096347 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s11227-015-1387-y" target="_blank" >http://dx.doi.org/10.1007/s11227-015-1387-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11227-015-1387-y" target="_blank" >10.1007/s11227-015-1387-y</a>
Alternative languages
Result language
angličtina
Original language name
Evaluation efficiency of large-scale data set with negative data: an artificial neural network approach
Original language description
Data envelopment analysis (DEA) is the most widely used methods for measuring the efficiency and productivity of decision-making units (DMUs). The need for huge computer resources in terms of memory and CPU time in DEA is inevitable for a large-scale data set, especially with negative measures. In recent years, wide ranges of studies have been conducted in the area of artificial neural network and DEA combined methods. In this study, a supervised feed-forward neural network is proposed to evaluate the efficiency and productivity of large-scale data sets with negative values in contrast to the corresponding DEA method. Results indicate that the proposed network has some computational advantages over the corresponding DEA models; therefore, it can be considered as a useful tool for measuring the efficiency of DMUs with (large-scale) negative data.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
AE - Management, administration and clerical work
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Supercomputing
ISSN
0920-8542
e-ISSN
—
Volume of the periodical
71
Issue of the periodical within the volume
7
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
15
Pages from-to
2397-2411
UT code for WoS article
000357345600004
EID of the result in the Scopus database
—