Asymptotic stochastic dominance rules for sums of i.i.d. random variables.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F16%3A86094707" target="_blank" >RIV/61989100:27510/16:86094707 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.cam.2015.12.017" target="_blank" >http://dx.doi.org/10.1016/j.cam.2015.12.017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2015.12.017" target="_blank" >10.1016/j.cam.2015.12.017</a>
Alternative languages
Result language
angličtina
Original language name
Asymptotic stochastic dominance rules for sums of i.i.d. random variables.
Original language description
In this paper, we deal with stochastic dominance rules under the assumption that the random variables are stable distributed. The stable Paretian distribution is generally used to model a wide range of phenomena. In particular, its use in several applicative areas is mainly justified by the generalized central limit theorem, which states that the sum of a number of i.i.d. random variables with heavy tailed distributions tends to a stable Paretian distribution. We show that the asymptotic behaviour of the tails is fundamental for establishing a dominance in the stable Paretian case. Moreover, we introduce a new weak stochastic order of dispersion, aimed at evaluating whether a random variable is more "risky" than another under condition of maximum uncertainty, and a stochastic order of asymmetry, aimed at evaluating whether a random variable is more or less asymmetric than another. The theoretical results are confirmed by a financial application of the obtained dominance rules. The empirical analysis shows that the weak order of risk introduced in this paper is generally a good indicator for the second order stochastic dominance.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BB - Applied statistics, operational research
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA15-23699S" target="_blank" >GA15-23699S: Risk Probability Functionals and Ordering Theory Applied to International Financial Markets and Portfolio Selection Problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of computational and applied mathematics
ISSN
0377-0427
e-ISSN
—
Volume of the periodical
300
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
17
Pages from-to
432-448
UT code for WoS article
000371551300031
EID of the result in the Scopus database
2-s2.0-84957560262