Statistical and Soft Computing Methods Applied to High Frequency Data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F16%3A86097350" target="_blank" >RIV/61989100:27510/16:86097350 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Statistical and Soft Computing Methods Applied to High Frequency Data
Original language description
We evaluate statistical and machine learning methods for predicting different high frequency data sets. Firstly, in this paper we develop forecasting models based on the statistical (stochastic) methods, and on the soft methods using neural networks for the time series of daily exchange rates AUD currency against US dollar. Secondly, we evaluate statistical and machine learning methods for half-hourly 1-step-ahead electricity demand prediction using Australian electricity data. To illustrate the forecasting performance of these approaches the learning aspects of RBF networks are presented. We also show that an RBF neural network trained by genetic algorithm can achieved better prediction result than classic one. It is also found that the risk estimation process based on soft methods is simplified and less critical to the question whether the data is true crisp or white noise.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0296" target="_blank" >EE2.3.20.0296: Research team for modelling of economic and financial processes at VSB-TU Ostrava</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Multiple-Valued Logic and Soft Computing
ISSN
1542-3980
e-ISSN
—
Volume of the periodical
Volume 26
Issue of the periodical within the volume
6
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
593-608
UT code for WoS article
000371439400005
EID of the result in the Scopus database
2-s2.0-84961827256