Transformation of generalized multiple Riemann zeta type sums with repeated arguments
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F17%3A10237600" target="_blank" >RIV/61989100:27510/17:10237600 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.12.023" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2016.12.023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.12.023" target="_blank" >10.1016/j.jmaa.2016.12.023</a>
Alternative languages
Result language
angličtina
Original language name
Transformation of generalized multiple Riemann zeta type sums with repeated arguments
Original language description
The aim of this paper is the study of a transformation dealing with the general K-fold infinite series of the form Sigma(n1 >=...>= nK >= 1) Pi(K)(j=1) a(nj), especially those, where a(n) = R(n) is a rational function satisfying certain simple conditions. These sums represent the direct generalization of the well-known multiple Riemann zeta -star function with repeated arguments zeta*({s}(K)) when a(n) = 1/n(s). Our result reduces Sigma Pi a(nj) to a special kind of one-fold infinite series. We apply the main theorem to the rational function R(n) = 1/((n + a)(s) + b(s)) in case of which the resulting K-fold sum is called the generalized multiple Hurwitz zeta -star function zeta*(a, b; {s}(K)). We construct an effective algorithm enabling the complete evaluation of zeta*(a, b; {2s}(K)) with a is an element of {0, -1/2}, b is an element of R {0}, (K, s) is an element of N-2, by means of a differential operator and present a simple 'Mathematica' code that allows their symbolic calculation. We also provide a new transformation of the ordinary multiple Riemann zeta-star values zeta*({2s}(K)) and zeta*({3}(K)) corresponding to a = b = 0.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
449
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
24
Pages from-to
490-513
UT code for WoS article
000393148100025
EID of the result in the Scopus database
2-s2.0-85008208871