Evaluation and selection of clustering methods using a hybrid group MCDM
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F19%3A10242773" target="_blank" >RIV/61989100:27510/19:10242773 - isvavai.cz</a>
Result on the web
<a href="https://reader.elsevier.com/reader/sd/pii/S0957417419305135?token=D41C16756DA3F3573623F970AA02971290A7D87A826CED707A2D6890FE262349297E1ED3E76AD18D0B47190E2AA54619" target="_blank" >https://reader.elsevier.com/reader/sd/pii/S0957417419305135?token=D41C16756DA3F3573623F970AA02971290A7D87A826CED707A2D6890FE262349297E1ED3E76AD18D0B47190E2AA54619</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2019.07.034" target="_blank" >10.1016/j.eswa.2019.07.034</a>
Alternative languages
Result language
angličtina
Original language name
Evaluation and selection of clustering methods using a hybrid group MCDM
Original language description
Due to the lack of objective measures, the evaluation and prioritization of clustering methods is inherently challenging. Since their evaluation generally involves numerous criteria, it can be designed as a multiple criteria decision making (MCDM) problem and using multiple data sets, the problem can be formulated as a group MCDM modeling. In this paper, a MCDM-based framework is proposed to evaluate and rank a number of clustering methods. The proposed approach employs three group MCDM algorithms and a Borda count method which leads to a comprehensive, robust framework capable of evaluating and ranking multiple clustering models on manifold data sets (cases). Moreover, we introduce a hybrid data clustering algorithm which combines a particle swarm optimization (PSO) algorithm with a K-means clustering algorithm. Finally, a clustering comparison with regard to both external and internal evaluation indicators is another contribution of this paper. Six clustering methods are compared based on five evaluation measures. The results of comparative experiments on ten data sets indicate the effectiveness of the proposed hybrid clustering method. More importantly, the experimental results vividly demonstrate the effectiveness of the group MCDM-based evaluation on clustering model selection. (C) 2019 Elsevier Ltd. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
50202 - Applied Economics, Econometrics
Result continuities
Project
<a href="/en/project/GA17-22662S" target="_blank" >GA17-22662S: Multiple Criteria Decision Making Modelling: Novel Weighting Methods and Hybrid Approaches</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
—
Volume of the periodical
138
Issue of the periodical within the volume
Prosinec
Country of publishing house
GB - UNITED KINGDOM
Number of pages
19
Pages from-to
—
UT code for WoS article
000489189900014
EID of the result in the Scopus database
—