A Robust Cross-Efficiency Data Envelopment Analysis Model in the Presence of Undesirable Outputs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F21%3A10245679" target="_blank" >RIV/61989100:27510/21:10245679 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0957417420308666" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417420308666</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2020.114117" target="_blank" >10.1016/j.eswa.2020.114117</a>
Alternative languages
Result language
angličtina
Original language name
A Robust Cross-Efficiency Data Envelopment Analysis Model in the Presence of Undesirable Outputs
Original language description
Degenerate optimal weights and uncertain data are two challenging problems in conventional data envelopment analysis (DEA). Cross-efficiency and robust optimization are commonly used to handle such problems. We develop two DEA adaptations to rank decision-making units (DMUs) characterized by uncertain data and undesirable outputs. The first adaptation is an interval approach, where we propose lower- and upper-bounds for the efficiency scores and apply a robust cross-efficiency model to avoid problems of non-unique optimal weights and uncertain data. We initially use the proposed interval approach and categorize DMUs into fully efficient, efficient, and inefficient groups. The second adaptation is a robust approach, where we rank the DMUs, with a measure of cross-efficiency that extends the traditional classification of efficient and inefficient units. Results show that we can obtain higher discriminatory power and higher-ranking stability compared with the interval models. We present an example from the literature and a real-world application in the banking industry to demonstrate this capability.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
50202 - Applied Economics, Econometrics
Result continuities
Project
<a href="/en/project/GA19-13946S" target="_blank" >GA19-13946S: Performance evaluation in the presence of unclassified factors</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
—
Volume of the periodical
167
Issue of the periodical within the volume
04/2021
Country of publishing house
GB - UNITED KINGDOM
Number of pages
16
Pages from-to
—
UT code for WoS article
000640531100007
EID of the result in the Scopus database
2-s2.0-85095985296