All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

DG method for numerical option pricing under the merton short rate model

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F21%3A10247514" target="_blank" >RIV/61989100:27510/21:10247514 - isvavai.cz</a>

  • Alternative codes found

    RIV/46747885:24510/21:00009602

  • Result on the web

    <a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85102729462&origin=resultslist" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85102729462&origin=resultslist</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0041933" target="_blank" >10.1063/5.0041933</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    DG method for numerical option pricing under the merton short rate model

  • Original language description

    One of the possible improvements of the classical Black-Scholes option pricing model is to incorporate the stochastic nature of the short rate dynamics in option valuation. In this paper, we present the numerical scheme, based on the discontinuous Galerkin method, for European option pricing when the short rate follows the Merton model. The pricing function satisfies a partial differential equation with two underlying variables-stock price and short rate value. With a localization to a bounded spatial domain, including setting the proper boundary conditions, the governing equation is discretized by the discontinuous Galerkin method over a finite element grid and Crank-Nicolson time integration is applied, consequently. As a result the numerical scheme is represented by a sequence of linear algebraic systems with sparse matrices. Moreover, the numerical simulations reflect the capability of the scheme presented. (C) 2021 Author(s).

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    50200 - Economics and Business

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    AIP Conference Proceedings. Volume 2333

  • ISBN

    978-0-7354-4077-7

  • ISSN

    0094-243X

  • e-ISSN

    1551-7616

  • Number of pages

    10

  • Pages from-to

  • Publisher name

    American Institute of Physics

  • Place of publication

    Melville

  • Event location

    Sofie

  • Event date

    Jun 7, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000664205600082