DG method for numerical option pricing under the merton short rate model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F21%3A10247514" target="_blank" >RIV/61989100:27510/21:10247514 - isvavai.cz</a>
Alternative codes found
RIV/46747885:24510/21:00009602
Result on the web
<a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85102729462&origin=resultslist" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85102729462&origin=resultslist</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0041933" target="_blank" >10.1063/5.0041933</a>
Alternative languages
Result language
angličtina
Original language name
DG method for numerical option pricing under the merton short rate model
Original language description
One of the possible improvements of the classical Black-Scholes option pricing model is to incorporate the stochastic nature of the short rate dynamics in option valuation. In this paper, we present the numerical scheme, based on the discontinuous Galerkin method, for European option pricing when the short rate follows the Merton model. The pricing function satisfies a partial differential equation with two underlying variables-stock price and short rate value. With a localization to a bounded spatial domain, including setting the proper boundary conditions, the governing equation is discretized by the discontinuous Galerkin method over a finite element grid and Crank-Nicolson time integration is applied, consequently. As a result the numerical scheme is represented by a sequence of linear algebraic systems with sparse matrices. Moreover, the numerical simulations reflect the capability of the scheme presented. (C) 2021 Author(s).
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
50200 - Economics and Business
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
AIP Conference Proceedings. Volume 2333
ISBN
978-0-7354-4077-7
ISSN
0094-243X
e-ISSN
1551-7616
Number of pages
10
Pages from-to
—
Publisher name
American Institute of Physics
Place of publication
Melville
Event location
Sofie
Event date
Jun 7, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000664205600082