An Equivalent Linear Programming Form of General Linear Fractional Programming: A Duality Approach.
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F21%3A10247682" target="_blank" >RIV/61989100:27510/21:10247682 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/2227-7390/9/14/1586/htm" target="_blank" >https://www.mdpi.com/2227-7390/9/14/1586/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math9141586" target="_blank" >10.3390/math9141586</a>
Alternative languages
Result language
angličtina
Original language name
An Equivalent Linear Programming Form of General Linear Fractional Programming: A Duality Approach.
Original language description
Linear fractional programming has been an important planning tool for the past four decades. The main contribution of this study is to show, under some assumptions, for a linear programming problem, that there are two different dual problems (one linear programming and one linear fractional functional programming) that are equivalent. In other words, we formulate a linear programming problem that is equivalent to the general linear fractional functional programming problem. These equivalent models have some interesting properties which help us to prove the related duality theorems in an easy manner. A traditional data envelopment analysis (DEA) model is taken, as an instance, to illustrate the applicability of the proposed approach.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-13946S" target="_blank" >GA19-13946S: Performance evaluation in the presence of unclassified factors</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematics
ISSN
2227-7390
e-ISSN
—
Volume of the periodical
9
Issue of the periodical within the volume
14
Country of publishing house
CH - SWITZERLAND
Number of pages
9
Pages from-to
1586
UT code for WoS article
000676762000001
EID of the result in the Scopus database
2-s2.0-85110744242