Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F22%3A10247908" target="_blank" >RIV/61989100:27510/22:10247908 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/article/10.1007%2Fs10614-021-10167-w" target="_blank" >https://link.springer.com/article/10.1007%2Fs10614-021-10167-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10614-021-10167-w" target="_blank" >10.1007/s10614-021-10167-w</a>
Alternative languages
Result language
angličtina
Original language name
Portfolio Selection Using Multivariate Semiparametric Estimators and a Copula PCA-Based Approach
Original language description
This paper investigates the implications for portfolio theory of using multivariate semiparametric estimators and a copula-based approach, especially when the number of risky assets becomes substantial. Parametric, nonparametric, and semiparametric regression methods are compared to approximate their returns in large-scale portfolio selection problems. Semiparametric regression models are used to prove that, under certain assumptions, the variability of the errors decreases as the number of factors increases. Moreover, a copula principal component analysis (PCA)-based approach is proposed, and its superiority to the classical Pearson PCA approach is demonstrated. Empirical analyses validate the suggested approaches and evaluate the impact of different approximation methods on portfolio selection problems. Here, the ex-ante sample paths of several portfolio strategies aiming to maximize portfolio wealth using either reward-risk or drawdown-based performance measures are compared. The results show that the proposed methodologies outperform the traditional approach for out-of-sample portfolios, especially when the dependence structure is represented by the Pearson linear correlation. (C) 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
50200 - Economics and Business
Result continuities
Project
<a href="/en/project/GA20-16764S" target="_blank" >GA20-16764S: A generalized approach to stochastic dominance: theory and financial applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Computational Economics
ISSN
0927-7099
e-ISSN
—
Volume of the periodical
60
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
27
Pages from-to
833-859
UT code for WoS article
000693705500002
EID of the result in the Scopus database
2-s2.0-85114314059